Low-density lipoprotein

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins, which in order of size, largest to smallest, are chylomicrons, VLDL, IDL, LDL, and HDL, that enable transport of multiple different fat molecules, including cholesterol, within the water around cells and within the water-based bloodstream. Studies have shown that higher levels of type-B LDL particles (as opposed to type-A LDL particles) promote health problems and cardiovascular disease, they are often informally called the bad cholesterol particles, (as opposed to HDL particles, which are frequently referred to as good cholesterol or healthy cholesterol particles).[1]

Contents

Testing

Blood tests typically report LDL-C, the amount of cholesterol contained in LDL. In clinical context, mathematically calculated estimates of LDL-C are commonly used to estimate how much low density lipoproteins are driving progression of atherosclerosis.

Direct LDL measurements are also available and better reveal individual issues but are less often promoted or done due to slightly higher costs and being available from only a couple of laboratories in the United States. In 2008, the ADA and ACC recognized direct LDL particle measurement by NMR as superior for assessing individual risk of cardiovascular events.[2]

Biochemistry

Structure

Each native LDL particle contains a single apolipoprotein B-100 molecule (Apo B-100, a protein that has 4536 amino acid residues and a mass of 514 kDa), which circulates the fatty acids, keeping them soluble in the aqueous environment. In addition, LDL has a highly-hydrophobic core consisting of polyunsaturated fatty acid known as linoleate and about 1500 esterified cholesterol molecules. This core is surrounded by a shell of phospholipids and unesterified cholesterol, as well as the single copy of Apo B-100. LDL particles are approximately 22 nm (0.00000087 in.) in diameter and have a mass of about 3 million daltons, but since LDL particles contain a changing number of fatty acids, they actually have a distribution of mass and size.[3] Determining structure of LDL has been a tough task because of its heterogeneous structure. First structure of LDL at human body temperature in native condition has been recently found using cryo-electron microscopy and it has resolution of 16 Angstrom.[4]

LDL subtype patterns

LDL particles vary in size and density, and studies have shown that a pattern that has more small dense LDL particles, called Pattern B, equates to a higher risk factor for coronary heart disease (CHD) than does a pattern with more of the larger and less dense LDL particles (Pattern A). This is because the smaller particles are more easily able to penetrate the endothelium. Pattern I, for intermediate, indicates that most LDL particles are very close in size to the normal gaps in the endothelium (26 nm). According to one study, sizes 19.0 to 20.5 nm were designated as pattern B and LDL sizes 20.6–22 nm were designated as pattern A.[5]

Some in the medical community have suggested the correspondence between Pattern B and CHD is stronger than the correspondence between the LDL number measured in the standard lipid profile test. Tests to measure these LDL subtype patterns have been more expensive and not widely available, so the common lipid profile test is used more commonly.

There has also been noted a correspondence between higher triglyceride levels and higher levels of smaller, denser LDL particles and alternately lower triglyceride levels and higher levels of the larger, less dense LDL.[6][7]

With continued research, decreasing cost, greater availability and wider acceptance of other lipoprotein subclass analysis assay methods, including NMR spectroscopy,[8] research studies have continued to show a stronger correlation between human clinically obvious cardiovascular event and quantitatively-measured particle concentrations.

Transport into the cell

When a cell requires cholesterol, it synthesizes the necessary LDL receptors, and inserts them into the plasma membrane. The LDL receptors diffuse freely until they associate with clathrin-coated pits. LDL particles in the blood stream bind to these extracellular LDL receptors. The clathrin-coated pits then form vesicles that are endocytosed into the cell.

After the clathrin coat is shed, the vesicles deliver the LDL and their receptors to early endosomes, onto late endosomes to lysosomes. Here the cholesterol esters in the LDL are hydrolysed. The LDL receptors are recycled back to the plasma membrane.

Medical relevance

Because LDL particles can also transport cholesterol into the artery wall, retained there by arterial proteoglycans and attract macrophages that engulf the LDL particles and start the formation of plaques, increased levels are associated with atherosclerosis. Over time vulnerable plaques rupture, activate blood clotting and produce arterial stenosis, which if severe enough results in heart attack, stroke, and peripheral vascular disease symptoms and major debilitating events.

Increasing evidence has revealed that the concentration and size of the LDL particles more powerfully relates to the degree of atherosclerosis progression than the concentration of cholesterol contained within all the LDL particles.[9] The healthiest pattern A, though relatively rare, is to have small numbers of large LDL particles and no small particles. Having small LDL particles, though common, is an unhealthy pattern B; high concentrations of small LDL particles (even though potentially carrying the same total cholesterol content as a low concentration of large particles) correlates with much faster growth of atheroma, progression of atherosclerosis and earlier and more severe cardiovascular disease events and death. This video [5], examining autopsy specimens from an actual heart attack resulting in sudden death, shows the seqence. These videos, [6] and [7], illustrate the sequence of events and why, though the underlying process develops over decades, the symptoms are often of sudden onset.

LDL particles are formed as VLDL lipoproteins lose triglyceride through the action of lipoprotein lipase (LPL) and they become smaller and denser (i.e. fewer fat molecules with same protein transport shell), containing a higher proportion of cholesterol esters [8].

A hereditary form of high LDL is familial hypercholesterolemia (FH). Increased LDL is termed hyperlipoproteinemia type II (after the dated Fredrickson classification).

LDL particles pose a risk for cardiovascular disease when they invade the endothelium and becomes oxidized, since the oxidized forms are more easily retained by the proteoglycans. A complex set of biochemical reactions regulates the oxidation of LDL particles, chiefly stimulated by presence of necrotic cell debries [9] and free radicals in the endothelium.

Role in the innate immune system

LDL lipoproteins interfere with the quorum sensing system that upregulates genes required for invasive Staphylococcus aureus infection. The mechanism of antagonism entails binding Apolipoprotein B, to a S. aureus autoinducer pheromone, preventing signaling through its receptor. Mice deficient in apolipoprotein B are more susceptible to invasive bacterial infection.[10]

Lowering LDL

The mevalonate pathway serves as the basis for the biosynthesis of many molecules, including cholesterol. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) is an essential component in the pathway.

Pharmaceutical

Dietary

Importance of antioxidants

Because LDL particles appear harmless until they are within the blood vessel walls and oxidized by free radicals,[19] it is postulated that ingesting antioxidants and minimizing free radical exposure may reduce LDL's contribution to atherosclerosis, though results are not conclusive.[20] Studies have reported the benefits of green tea in helping to reduce LDL. The unfermented green tea leaves contain powerful antioxidants which can lower total cholesterol besides increasing level of HDL or the good cholesterol.[21]

Estimation of LDL particles via cholesterol content

Chemical measures of lipid concentration have long been the most-used clinical measurement, not because they have the best correlation with individual outcome, but because these lab methods are less expensive and more widely available.

The lipid profile does not measure LDL particles directly but instead estimates them using the Friedewald equation[7][22] by subtracting the amount of cholesterol associated with other particles, such as HDL and VLDL, assuming a prolonged fasting state, etc.:

H \approx C - L - kT
where H is HDL cholesterol, L is LDL cholesterol, C is total cholesterol, T are triglycerides, and k is 0.20 if the quantities are measured in mg/dl and 0.45 if in mmol/l.

There are limitations to this method, most notably that samples must be obtained after a 12 to 14 h fast and that LDL-C cannot be calculated if plasma triglyceride is >4.52 mmol/L (400 mg/dL). Even at triglyceride levels 2.5 to 4.5 mmol/L, this formula is considered inaccurate.[23] If both total cholesterol and triglyceride levels are elevated then a modified formula, with quantities are in mg/dl, may be used

L = C - H - 0.16T

This formula provides an approximation with fair accuracy for most people, assuming the blood was drawn after fasting for about 14 hours or longer.

However, the concentration of LDL particles, and to a lesser extent their size, has a slightly stronger correlation with individual clinical outcome than the amount of cholesterol within LDL particles, even if the LDL-C estimation is approximately correct. There is increasing evidence and recognition of the value of more targeted and accurate measurements of LDL particles. Specifically, LDL particle number (concentration), and to a lesser extent size, have shown slightly stronger correlations with atherosclerotic progression and cardiovascular events than obtained using chemical measures of the amount of cholesterol carried by the LDL particles [11]. It is possible that the LDL cholesterol concentration can be low, yet LDL particle number high and cardiovascular events rates are high. Correspondingly, it is possible that LDL cholesterol concentration can be relatively high, yet LDL particle number low and cardiovascular events are also low. If LDL particle concentration is used to predict cardiovascular events, many other correlates of these clinical outcomes, such as diabetes mellitus, obesity and smoking, lose much of their predictive power.

Normal ranges

In the USA, the American Heart Association, NIH, and NCEP provide a set of guidelines for fasting LDL-Cholesterol levels, estimated or measured, and risk for heart disease. As of about 2005, these guidelines were:[24][25][26]

Level mg/dL Level mmol/L Interpretation
25 to <50 <1.3 Optimal LDL cholesterol, levels in healthy young children before onset of atherosclerotic plaque in heart artery walls
<70 <1.8 Optimal LDL cholesterol, corresponding to lower rates of progression, promoted as a target option for those known to clearly have advanced symptomatic cardiovascular disease
<100 <2.6 Optimal LDL cholesterol, corresponding to lower, but not zero, rates for symptomatic cardiovascular disease events
100 to 129 2.6 to 3.3 Near optimal LDL level, corresponding to higher rates for developing symptomatic cardiovascular disease events
130 to 159 3.3 to 4.1 Borderline high LDL level, corresponding to even higher rates for developing symptomatic cardiovascular disease events
160 to 199 4.1 to 4.9 High LDL level, corresponding to much higher rates for developing symptomatic cardiovascular disease events
>200 >4.9 Very high LDL level, corresponding to highest increased rates of symptomatic cardiovascular disease events

Over time, with more clinical research, these recommended levels keep being reduced because LDL reduction, including to abnormally low levels, was the most effective strategy for reducing cardiovascular death rates in one large double blind, randomized clinical trial of men with hypercholesterolemia;[27] far more effective than coronary angioplasty/stenting or bypass surgery.

For instance, for people with known atherosclerosis diseases, the 2004 updated American Heart Association, NIH and NCEP recommendations are for LDL levels to be lowered to less than 70 mg/dL, unspecified how much lower. This low level of less than 70 mg/dL was recommended for primary prevention of 'very-high risk patients' and in secondary prevention as a 'reasonable further reduction'. Lack of evidence for such a recommendation is discussed in an article in the Annals of internal medicine.[28] It should also be noted that statin drugs involved in such clinical trials have numerous physiological effects beyond simply the reduction of LDL levels.

It has been estimated from the results of multiple human pharmacologic LDL lowering trials that LDL should be lowered to about 50 to reduce cardiovascular event rates to near zero. For reference, from longitudinal population studies following progression of atherosclerosis-related behaviors from early childhood into adulthood, it has been discovered that the usual LDL in childhood, before the development of fatty streaks, is about 35 mg/dL. However, all the above values refer to chemical measures of lipid/cholesterol concentration within LDL, not LDLipoprotein concentrations, probably not the better approach.

The feasibility of these figures has been questioned by sceptics, claiming that many members of the AHA and NIH are heavily associated with pharmaceutical companies giving them bias towards lowering cholesterol levels and such guidelines giving rise to increased use of cholesterol lowering medicine such as statins.

A study was conducted measuring the effects of guideline changes on LDL cholesterol reporting and control for diabetes visits in the US from 1995 to 2004. It was found that although LDL cholesterol reporting and control for diabetes and coronary heart disease visits improved continuously between 1995 and 2004, neither the 1998 ADA guidelines nor the 2001 ATP III guidelines increased LDL cholesterol control for diabetes relative to coronary heart disease.[29]

Moreover, there are publications[30] regarding the risks of low-LDL cholesterol too.

Direct measurement of LDL concentration

There are several competing methods for measurement of lipoprotein particle size although the evidence in favor of their superiority to existing methods is weak, even by the statements of proponents.[31] Direct LDL particle measurement by NMR was mentioned by the ADA and ACC, in a 28 March 2008 joint consensus statement,[32] as having advantages for predicting individual risk of atherosclerosis disease events, but the statement noted that the test is not widely available and is more expensive than existing tests. Furthermore the authors also said it is "...unclear whether LDL particle size measurements add value to measurement of LDL particle concentration." Since the later 1990s, because of the development of NMR measurements, it has been possible, to clinically measure lipoprotein particles at lower cost [under $100 US (including shipping) versus the previous costs of >$400 to >$5,000] and high accuracy. There are also other (less expensive) homogeneous assays for LDL.

Using NMR, the total LDL particle concentrations, in nmol/L plasma, are typically subdivided by percentiles referenced to the 5,382 men and women, not on any lipid medications, who participated in the MESA trial.[33]

Optimal ranges

The LDL particle concentrations are typically categorized by percentiles, <20%, 20–50%, 50th–80th%, 80th–95% and >95% groups of the people participating and being tracked in the MESA trial, a medical research study sponsored by the United States National Heart, Lung, and Blood Institute.

MESA Percentile LDL particles nmol/L Interpretation
0–20% <1,000 Those with lowest rate of cardiovascular disease events & low (optimal) LDL particle concentration
20–50% 1,000–1,299 Those with moderate rate of cardiovascular disease events & moderate LDL particle concentration
50–80% 1,300–1,599 Those with Borderline-High rate of cardiovascular disease events & higher LDL particle concentration
89–95% 1,600–2,000 Those with High rate of cardiovascular disease events & even higher LDL particle concentration
>95% >2,000 Those with Very High rate of cardiovascular disease events & highest LDL particle concentration

The lowest incidence of atherosclerotic events over time occurs within the <20% group, with increased rates for the higher groups. Multiple other measures, including particle sizes, small LDL particle concentrations, total and large HDL particle concentrations, along with estimations of insulin resistance pattern and standard cholesterol lipid measurements (for comparison of the plasma data with the estimation methods discussed above) are also routinely provided.

See also

Footnotes

  1. ^ LDL and HDL Cholesterol: What's Bad and What's Good?
  2. ^ John D. Brunzell, MD, FACP, Michael Davidson, MD, FACC, Curt D. Furberg, MD, PhD, Ronald B. Goldberg, MD, Barbara V. Howard, PhD, James H. Stein, MD, FACC, FACP and Joseph L. Witztum, MD Lipoprotein Management in Patients With Cardiometabolic Risk, J Am Coll Cardiol, 2008; 51:1512-1524. [1]
  3. ^ Segrest JP, Jones MK, De Loof H, Dashti N (September 2001). "Structure of apolipoprotein B-100 in low density lipoproteins". Journal of Lipid Research 42 (9): 1346–67. PMID 11518754. http://www.jlr.org/cgi/pmidlookup?view=long&pmid=11518754. 
  4. ^ Kumar V, Butcher SJ, Katrina O,Engelhardt P,Heikkonen J, Kaski K, Ala-Korpela M, Kovanen PT. (May 2011). "Three-Dimensional cryoEM Reconstruction of Native LDL Particles to 16Å Resolution at Physiological Body Temperature". PLOS one. doi:10.1371/journal.pone.0018841. PMC 3090388. PMID 21573056. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018841. 
  5. ^ http://onlinelibrary.wiley.com/doi/10.1002/clc.4960280510/pdf
  6. ^ Superko HR, Nejedly M, Garrett B (2002). "Small LDL and its clinical importance as a new CAD risk factor: a female case study". Progress in Cardiovascular Nursing 17 (4): 167–73. doi:10.1111/j.0889-7204.2002.01453.x. PMID 12417832. 
  7. ^ a b Warnick GR, Knopp RH, Fitzpatrick V, Branson L (January 1990). "Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints". Clinical Chemistry 36 (1): 15–9. PMID 2297909. http://www.clinchem.org/cgi/pmidlookup?view=long&pmid=2297909. 
  8. ^ Otvos J (June 1999). "Measurement of triglyceride-rich lipoproteins by nuclear magnetic resonance spectroscopy". Clin Cardiol 22 (6 Suppl): II21–7. PMID 10376193. 
  9. ^ Not All Calories Are Created Equal, Author Says. Talk of the Nation discussion of the book Good Calories, Bad Calories, by Gary Taubes. National Public Radio, 2 November 2007.
  10. ^ Peterson MM, Mack JL, Hall PR, et al. (December 2008). "Apolipoprotein B Is an innate barrier against invasive Staphylococcus aureus infection". Cell Host & Microbe 4 (6): 555–66. doi:10.1016/j.chom.2008.10.001. PMC 2639768. PMID 19064256. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2639768. 
  11. ^ [2]
  12. ^ Meyers CD, Kamanna VS, Kashyap ML (December 2004). "Niacin therapy in atherosclerosis". Current Opinion in Lipidology 15 (6): 659–65. doi:10.1097/00041433-200412000-00006. PMID 15529025. 
  13. ^ a b Soudijn W, van Wijngaarden I, Ijzerman AP (May 2007). "Nicotinic acid receptor subtypes and their ligands". Medicinal Research Reviews 27 (3): 417–33. doi:10.1002/med.20102. PMID 17238156. 
  14. ^ "WHO cooperative trial on primary prevention of ischemic heart disease with clofibrate to lower serum cholesterol: final mortality follow-up. Report of the Committee of Principal Investigators". Lancet 2 (8403): 600–4. September 1984. PMID 6147641. 
  15. ^ Song, B.L.; DeBose-Boyd, R.A. (2006). "Insig-Dependent Ubiquitination and Degradation of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Stimulated by Delta- and Gamma-Tocotrienols". J. Biol. Chem. 281 (35): 25054–25601. doi:10.1074/jbc.M605575200. PMID 16831864. 
  16. ^ European Food Safety Authority, Journal (2010). "Scientific opinion on the substantiation of health claims related to plant sterols and plant stanols and maintenance of normal blood cholesterol concentrations". http://www.efsa.europa.eu/en/efsajournal/pub/1813.htm. 
  17. ^ Demonty, I; Ras, RT, van der Knaap, HC, Duchateau, GS, Meijer, L, Zock, PL, Geleijnse, JM, Trautwein, EA (2009 Feb). "Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake.". The Journal of nutrition 139 (2): 271–84. doi:10.3945/jn.108.095125. PMID 19091798. 
  18. ^ Regulation of Cholesterol Synthesis
  19. ^ Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. Teissedre, P.L. : Frankel, E.N. : Waterhouse, A.L. : Peleg, H. : German, J.B. J-sci-food-agric. Sussex : John Wiley : & : Sons Limited. Jan 1996. v. 70 (1) p. 55-61.
  20. ^ Esterbauer H, Puhl H, Dieber-Rotheneder M, Waeg G, Rabl H (1991). "Effect of antioxidants on oxidative modification of LDL". Annals of Medicine 23 (5): 573–81. doi:10.3109/07853899109150520. PMID 1756027. 
  21. ^ How to Lower Cholesterol
  22. ^ Friedewald WT, Levy RI, Fredrickson DS (June 1972). "Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge". Clinical Chemistry 18 (6): 499–502. PMID 4337382. http://www.clinchem.org/cgi/pmidlookup?view=long&pmid=4337382. 
  23. ^ Sniderman AD, Blank D, Zakarian R, Bergeron J, Frohlich J (October 2003). "Triglycerides and small dense LDL: the twin Achilles heels of the Friedewald formula". Clinical Biochemistry 36 (7): 499–504. doi:10.1016/S0009-9120(03)00117-6. PMID 14563441. 
  24. ^ "Cholesterol Levels". American Heart Association. http://www.americanheart.org/presenter.jhtml?identifier=4500. Retrieved 2009-11-14. 
  25. ^ "What Do My Cholesterol Levels Mean?" (PDF). American Heart Association. September 2007. http://www.americanheart.org/downloadable/heart/119618151049911%20CholLevels%209_07.pdf. Retrieved 2009-11-14. 
  26. ^ "Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Executive Summary". National Heart, Lung, and Blood Institute (NHLBI). National Institutes of Health. May 2001. http://www.nhlbi.nih.gov/guidelines/cholesterol/atp3xsum.pdf. 
  27. ^ Shepherd J, Cobbe SM, Ford I, et al. (November 1995). "Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group". The New England Journal of Medicine 333 (20): 1301–7. doi:10.1056/NEJM199511163332001. PMID 7566020. 
  28. ^ Narrative Review: Lack of Evidence for Recommended Low-Density Lipoprotein Treatment Targets: A Solvable Problem
  29. ^ Wang, Y Richard; G Caleb Alexander and David O Meltzer (December 2005). "Lack of Effect of Guideline Changes on LDL Cholesterol Reporting and Control for Diabetes Visits in the U.S., 1995–2004". Diabetes Care 28 (12): 2942–2944. PMID 16306559. http://www.ncbi.nlm.nih.gov/pubmed?term=16306559. Retrieved 2011-11-11. 
  30. ^ Low serum LDL cholesterol levels and the risk of fever, sepsis, and malignancy.
  31. ^ . PMID 20531184. 
  32. ^ [3]
  33. ^ [4]

References & External Links